Saturday, 2 February 2019

GRADE OF CONCRETE

GRADES OF CONCRETE

Concrete is a mixture of Portland cement, water, and coarse and fine aggregates. It consolidates into a hard mas because of a chemical reaction called hydration between cement and water. Proportioning a concrete mix for a given purpose is thus the art of obtaining a suitable ratio of the various ingredients of concrete with the required properties at the lowest cost.

Concrete is generally graded according to its compressive strength. In the designation of concrete mix, the letter M refers to the mix and the number is the specified characteristic strength of 150 mm work cubes at 28 days, expressed in MPa (N/mm²).

Concrete is a construction material composed of cement, fine aggregates (sand) and coarse aggregates mixed with water which hardens with time. Portland cement is the commonly used type of cement for the production of concrete. Concrete technology deals with the study of properties of concrete and its practical applications.

In building construction, concrete is used for the construction of foundations, columns, beams, slabs and other load-bearing elements.

There are different types of binding material is used other than cement such as lime for lime concrete and bitumen for asphalt concrete which is used for road construction.

Various types of cement are used for concrete works which have different properties and applications. Some of the types of cement are Portland Pozzolana Cement (PPC), rapid hardening cement, Sulphate resistant cement etc.

Table of Contents

1 What is Concrete?
1.1 Components of Concrete?
1.2 What is Grade of Concrete?
2 How to Make Concrete?
3 Types of Concrete Construction
4 Steps of Concrete Construction

Materials are mixed in specific proportions to obtain the required strength. The strength of mix is specified as M5, M10, M15, M20, M25, M30 etc, where M signifies Mix and 5, 10, 15 etc. as their strength in kN/m2. In the United States, concrete strength is specified in PSI which is Pounds per Square Inch.
Water-cement ratio plays an important role which influences various properties such as workability, strength, and durability. Adequate water-cement ratio is required for the production of workable concrete.

When water is mixed with materials, cement reacts with water and hydration reaction starts. This reaction helps ingredients to form a hard matrix that binds the materials together into a durable stone-like material.

Concrete can be cast in any shape. Since it is a plastic material in the fresh state, various shapes and sizes of forms or formworks are used to provide different shapes such as rectangular, circular etc.

Various structural members such as beams, slabs, footings, columns, lintels etc. are constructed with concrete.

ACI 318 Building code requirements for structural concrete and ACI 301 Specifications for Structural Concrete are used in the United States as a standard code of practice for concrete construction.

There are different types of admixtures which are used to provide certain properties. Admixtures or additives such as pozzolans or superplasticizers are included in the mixture to improve the physical properties of the wet mix or the finished material.

Various types of concrete are manufactured these days for construction of buildings and structures. These have special properties and features which improve quality of construction as per requirement.

Components of Concrete

Components of concrete are cement, sand, aggregates, and water. A mixture of Portland cement and water is called paste. So, concrete can be called as a mixture of paste, sand, and aggregates. Sometimes rocks are used instead of aggregates.

The cement paste coats the surface of the fine and coarse aggregates when mixed thoroughly and binds them. Soon after mixing the components, hydration reaction starts which provides strength and a rock solid concrete is obtained.

What is Grade of Concrete?

A grade of concrete denotes its strength required for construction. For example, M30 grade signifies that compressive strength required for construction is 30MPa. The first letter in grade “M” is the mix and 30 is the required strength in MPa.

Based on various lab tests, grade of concrete is presented in Mix Proportions. For example, for M30 grade, the mix proportion can be 1:1:2, where 1 is the ratio of cement, 1 is the ratio of sand and 2 is the ratio of coarse aggregate based on volume or weight of materials.

The strength is measured with concrete cube or cylinders by civil engineers at the construction site. Cube or cylinders are made during casting of the structural member and after hardening, it is cured for 28 days. Then the compressive strength test is conducted to find the strength.

Regular grades of concrete are M15, M20, M25 etc. For plain cement concrete works, generally, M15 is used. For reinforced concrete construction minimum M20 grade of concrete are used.

Concrete
Grade
Mix Ratio Compressive Strength
MPa( N/mm²)
PSI
Normal Grade of Concrete
M5 1:5:10 05 MPa 725 psi
M7.5 1 : 4 : 8 7.5 MPa 1087 psi
M10 1 : 3 : 6 10 MPa 1450 psi
M15 1:2:4 15 MPa 2175 psi
M20 1:1.5:3 20 MPa 2900 psi
Standard Grade of Concrete
M25 1:1:2 25 MPa 3625 psi
M30 Design Mix 30 MPa 4350 psi
M35 Design Mix 35 MPa 5075 psi
M40 Design Mix 40 MPa 5800 psi
M45 Design Mix 45 MPa 6525 psi
High Strength Concrete Grades
M50 Design Mix 50 MPa 7250 psi
M55 Design Mix 55 MPa 7975 psi
M60 Design Mix 60 MPa 8700 psi
M65 Design Mix 65 MPa 9425 psi
M70 Design Mix 70 MPa 10150 psi

How to Make Concrete?


Concrete is manufactured or mixed in proportions w.r.t. cement quantity. There are two types of concrete mixes, i.e. nominal mix and design mix. The nominal mix is used for normal construction works such as small residential buildings. Most popular nominal mix are in the proportion of 1:2:4.

Design mixed concrete are those for which mix proportions are finalized based on various lab tests on cylinder or cube for its compressive strength. This process is also called as mix design. These tests are conducted to find a suitable mix based on locally available material to obtain strength required as per structural design. A design mixed offers economy on use of ingredients.

Once suitable mix proportions are known, then its ingredients are mixed in the ratio as selected. Two methods are used for mixing, i.e. Hand Mixing or Machine Mixing.

Based on the quantity and quality required, the suitable method of mixing is selected. In the hand mixing, each ingredient is placed on a flat surface and water is added and mixed with hand tools. In machine mixing, different types of machines are used. In this case, the ingredients are added in the required quantity to mix and produce fresh concrete.

Once it is mixed adequately it is transported to casting location and poured in formworks. Various types of formworks are available which as selected based on usage.

Poured concrete is allowed to set in formworks for a specified time based on the type of structural member to gain sufficient strength.

After removal of formwork, curing is done by various methods to make up the moisture loss due to evaporation. Hydration reaction requires moisture which is responsible for setting and strength gain. So, curing is generally continued for a minimum 7 days after removal of formwork.

Types of Concrete Construction

Concrete is generally used in two types of construction, i.e. plain concrete construction and reinforced concrete construction. In PCC, it is poured and cast without the use of any reinforcement. This is used when the structural member is subjected only to the compressive forces and not bending.

When a structural member is subjected to bending, reinforcements are required to withstand tension forces, structural member, as it is very weak in tension compared to compression. Generally, the strength of concrete in tension is only 10% of its strength in compression.

It is used as a construction material for almost all types of structures such as residential concrete buildings, industrial structures, dams, roads, tunnels, multi-story
buildings, skyscrapers, bridges, sidewalks, and superhighways etc.

Example of famous and large structures made with concrete are Hoover Dam, Panama Canal, and Roman Pantheon. It is the largest human-made building materials used for construction.
Disqus Comments